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Errata:

In Table 2 (p. 20) replace the three table headings by 

z(b 0M)/z(D 

z<2>0>,£)/z<2)
z(3)

as indicated in the figure caption.
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Synopsis

In multiple Coulomb excitations of deformed nuclei one may observe also 
a weaker excitation of rotational bands which are associated with states of dif
ferent intrinsic structure. In the present work, the excitation amplitudes of such 
states have been computed in the approximation where one neglects the energy 
differences between the states of a rotational band. For the case of dipole, qua
drupole and octupole excitations the results are given in the form of tables. 
They show that the relative population of the states within a band depends 
strongly on the spin and K quantum numbers as well as on admixtures in the 
wave function of components from the ground-state band. A detailed investiga
tion of the dependence of the cross sections on scattering angle is presented. One 
finds here appreciable deviations from the so-called /(^-approximation, especially 
concerning the excitation of the unnatural parity states.



I. Introduction

In recent years it has been possible by means of accelerated heavy ions to per
form multiple Coulomb excitation in deformed nuclei to high lying rotational 

states1,2). In these nuclei one may also excite states which differ from the ground 
state by having a different intrinsic structure3*.  The excitation probabilities of these 
states are in general so small that one is justified in describing the mechanism of 
their excitation by a perturbation treatment4*.  Such a treatment is complicated by the 
fact that many states in the ground-slate band as well as in the rotational band as
sociated with the final state are involved in the excitation process. Even though we 
consider the transition between the two intrinsic structures only to first order, we 
must take into account that this transition may take place between a number of dif
ferent rotational members of the two bands; the virtual excitation preceding as well 
as the virtual excitation or de-excitation succeeding the transition between the bands 
must be treated as multiple Coulomb excitations.

It was shown earlier4* how one may compute the excitation amplitudes of such 
states in the impact approximation, neglecting the energy differences between the 
nuclear states. Computations were made for backward scattering, and the results 
were generalized to other deflection angles by means of the so-called /(^-ap
proximation.

In the present work we generalize these calculations in three respects. Firstly, 
we include the possibility of Coulomb excitations of multipolarities other than qua
drupole. Secondly, we discuss the effect of impurities in the rotational bands. 
Finally, we include in the calculations the effects of a finite energy difference between 
the intrinsic nuclear states. While in the sudden approximation the two first general
izations are quite trivial, the last generalization introduces a number of complications 
in the theory. It is thus necessary to consider the deviations from the /($) approxima
tion as revealed e.g. in the non-negligible excitation of “unnatural” parity stales. More 
serious complications are associated with the computation of the excitation of impure 
rotational bands, and it has here proved quite convenient to formulate the deviations 
from the pure rotational model in terms of a modification of the nuclear multipole 
moments7*.

In Chapter II we give a formulation of the theory of Coulomb excitation in de
formed nuclei, together with a summary of the theory of small deviations from the 
pure rotational model.

1*



4 Nr. 6

The application of the theory to the excitation of pure rotational states is discussed 
in Chapter III. One finds here that the total excitation probability of a given rotational 
band is identical to the result of the ordinary first order perturbation theory. The 
relative excitation probabilities are determined by simple functions of the intrinsic 
quadrupole moment, which functions are tabulated in Appendix 2. These functions 
also depend strongly on the spin and A-quantum numbers of the states, and a meas
urement of the relative probabilities thus offers a convenient method of determining 
these quantities.

Finally, in Chapter IV, we consider the effect of weak band mixing. We evaluate 
explicitly the correction to be applied to the results of Chapter III for the important 
case of quadrupole excitations of bands which show admixture with the ground-state 
band.

II. General Theory

In the semi-classical approximation the Coulomb excitation amplitude of a state 
\f> from the state | i> is given by the expression4^

i I* 00 ~ 
~r\ £> (t) dt

af-<f\Te |ï>. (1)

In this formula T stands for the time ordering operator. The operator £>(/) is given by

&(J) = eh (2)

in terms of the time dependent Coulomb interaction §(7) between the nucleus and 
the projectile and the Hamiltonian Ho of the free nucleus.

In the present investigation we study the excitation of nuclei with a non-spherical 
equilibrium shape. For such nuclei the Hamiltonian Ho is conveniently written in 
the form5)

= ^int + ^rot +-^c- (3)

The first term is the intrinsic Hamiltonian which describes the motion of the nucleons 
in the intrinsic coordinate system defined by the shape of the nucleus. In the intrinsic 
motion are included vibrations of the nucleus around the equilibrium shape. The 
second term represents the energy associated with the rotation of the intrinsic system and 
is an operator that only depends on the Eulerian angles which specify the orientation 
of the intrinsic coordinate system. The last term represents the coupling between the 
intrinsic motion and the rotation.

The nuclear states |z> and \f> are eigenstates of Ho. In the pure rotational model 
one neglects the term Hc and the eigenstates may then be written as the product of 
eigenstates of Hint and of Hrot- For an axially symmetric nuclear shape this product 
wave function is given by
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I IKM> I nK> = ß- O)|nÆ>. (-1)

These wave functions represent the rigid rotation with total angular momentum I 
and magnetic quantum number M of a system described by the intrinsic wave func
tion \ nKy. The quantum number K denotes the component of the intrinsic angular 
momentum along the symmetry axis, while a and ß are the Eulerian angles speci
fying the orientation of this axis.

The actual wave functions for the states in pure rotational bands differ from (4) 
only through a symmetrization with respect to the sign of K. The correct rotational 
wave functions are found lo be5)

for K = 0
I IKMn > =

|/OM>nO>

for K > 0 (5)

where the intrinsic wave function | nK) determines the parity of the states. For K = 0 
only states of even I or only states of odd I occur.

It is well known from nuclear spectroscopy that even in strongly deformed nuclei 
there are deviations from the pure rotational model. These deviations must be 
ascribed to the presence of the coupling term Hc. While the explicit form of the Hamil
tonian Hc depends on the details of the nuclear model, one may argue that the most 
important parts of Hc can be obtained from a series expansion in powers of the ro
tational angular momentum7). Utilizing the invariance and symmetry principles ap
propriate for an axial symmetric nuclear shape one obtains to second order

Hc = h1 I_ + h_1 I+ + h2 il + h_2 I2. + 7z0I2. (6)

In (6) ht denotes an operator in the intrinsic degrees of freedom which changes the 
Æ-quantum number by i units. The operator I denotes the total angular momentum 
while I+ and I_ refer to the components of this quantity in the intrinsic coordinate 
system.

The effect of the interaction (6) may be taken into account by a perturbation 
treatment. One finds then that the perturbed states may be written in the form

\nIKMym = eis\nIKMy. (7)

The intrinsic matrix elements of the hermitian operator S are here given by

< /i i (Æ +1) I <S I n i K y — i l'q I±

< 7/ ± (Ä + 2) I S I 11 ± K > = ie2 I2±

< n' ± K I S I 71 ± K > = i£0 I2, 

(«)
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where is the matrix element of divided by the energy difference between the 
intrinsic states | n' > and |

In the computation of Coulomb excitation amplitudes we neglect the energy dif
ferences associated with HTOt and Hc. The operator § (/) is thus given by

§(0 =
J «int t

In the present investigation we deal with a situation in which the interaction 
§(0 may be written as a sum of two terms: A large term §0(t) which represents 
the interaction with the intrinsic quadrupole moment and a small term §j(0 
which represents a residual interaction which may cause transitions to other in
trinsic states. Under these circumstances one may perform a series expansion of 
the exponential function of (1) in powers of the quantity . To first order in 
§i(/) one finds

(10)

We have here left out the time ordering in the exponential functions since §o(O only 
gives rise to transitions within rotational bands and therefore, according to the as
sumption (9), §o(O is equal to §0(t).

The Coulomb interaction, §o(O> with the quadrupole moment of the deformed 
nucleus may be written in the form

§o(O = Zi e]/? Oo2? r~p3 ß, 0), (11)

where e is the charge and rp, t>p and cpp are the coordinates of the projectile, while 
()0 is the intrinsic quadrupole moment of the ground state.

The residual interaction §j(f) is then given by

•Sh (0 = ip <0 - ©o <0 (12)
with

© (0 = 4 TT Z, e 2? (2 a + 1 r1 , 9>s)ÎR*  (E A, A), (13)

where W(/sz, /<) is the nuclear electric multipole monent of order z. It is noted that 
the operator §1(/), besides causing transitions between different intrinsic states, also 
may describe effects from a small variation of the intrinsic quadrupole moment 
through the bands or from one band to another.
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III. The Excitation of Pure Bands

In this chapter we consider the Coulomb excitation in the pure rotational model. 
The nuclear wave functions are here given by (5). We first compute the excitation 
amplitude with the product wave functions (4) and only in the end of the chapter 
consider the effects of the symmetrization.

For the computation of the excitation amplitudes (10) it is convenient to express 
the multipole moments in (13) in the form

æ(EÅ, /<) - Z ß. U™. ”) (>-t)

(15)

with

(16)
/ 71

and

(17)

in terms of the corresponding multipole moments Whnt (E z, v) in the intrinsic coordi
nate system. In the pure rotational model these moments are independent of the 
Eulerian angles.

The excitation amplitude of a state in the ground-state band is then determined 
solely by the first term of (10). Similarly, the second term in (10) determines the 
excitation of states where the intrinsic wave functions differ from that of the ground 
state. Since the operators fp0(f) and .^>1(/) commute according to (11)—(14), the ex
citation amplitude from the state | Ao > | n0 Ao > to the state | If Kx | n1 >
mav be written

MfKt K„

We have here introduced the notation K = K1-Ko and

(18)
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where a is half the distance of closest approach in a head-on collision, v is the relative 
velocity at large distances, and Ex - Eo is the energy difference between the intrinsic
states I and | n0 Ko ). We shall evaluate the orbital integrals S2jU(^,£) in the 
coordinate systcm4) where the r-axis is chosen along the symmetry axis of the hyper
bolic orbit. In this coordinate system we introduce the functions defined
by the equation

^(^0 = 5;.o0) ’
(19)

With this notation, (16)—(17) may be written

k0 = l7 °) <0 (“’ß’ °)

h = £) (a, ß, 0)

(20)

(21)

in terms of the parameters q and defined by4)

^1 e Oo

4 h va2

< n0 I\o I SJlint (£A, - Æ) I zq 7q >.

(22)

The functions R/^(J), £), which directly determine the relative magnitude of the 
terms in (20)-(21), are defined in Appendix 1 in terms of the integrals /;,(&>£) 
(see ref. 6). For the case of A = 2 and £ = 0 they are tabulated in ref. 4. It is seen 
there that in the matrix element (20), where we have assumed £ = 0, the /t = 0 term 
dominates strongly over the /i # 0 terms for all angles. In the following we there
fore neglect these terms, i. e. we use

Â’o =^<7/?2oO?> °)Z)oo(a> ß> °) = |f7o(#)öoo(a> ß> °)- (23)

For the second matrix element (21) we may use a similar approximation if £ is 
small or if the scattering angle is close to 180 degrees. If the value of £ is of the order 
of 0.1 or larger, the terms with q 0 in (21) may contribute significantly, especially 
for forward scattering angles. We therefore include these terms in the computa
tion of the excitation amplitude. Including also the possibility of mixed multipole 
excitation we find by expanding the product of 77-functions on D-functions the fol
lowing expression for the excitation amplitude (15)

1’1, M, K.K. ■ E -/E 'E (#.«</, M, I (,0 (ö)) I Z, A'o ,V, > (24)
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where
<7/Æ1M/|CM(æ)IAÆoM,>

(25)

The functions Bj^ (æ) are given by

B^(x)-(-1)k-'‘|/(2Ï;i)C2T+T)2’(2J+1)( ' 1 J( \4nr-'(x) (26) 
J \-/t /< 0/ \- A A 0/

in terms of the functions
if1 -dxP,(y) .

(æ) = - \7 j (?/)e (2z)
2 J-l

which are tabulated in refs. 4 and 8.
It is seen from eq. (25) that the dependence of the excitation amplitude on the 

quadrupole moment Qo is contained in the functions Bæ Explicit formulae for these 
functions are given in Appendix 2 for 2 = 1, 2 and 3, together with tables for the 
lowest values of I.

It is noted that even in the pure rotational model the intrinsic quadrupole moment 
may be different for different rotational bands. The series expansion (10) with 
given by (11) is, however, valid only for states where the quadrupole moments are 
nearly equal to ()0. A possible small deviation is contained in our expansion, and it 
is seen that to first order it gives no contribution to the excitation of the coupled band. 
To minimize the error one should, however, choose Qo to be the average quadrupole 
moment of the two bands.

The physical significance of the functions B/^ (</) is illustrated by the special 
case of the excitation of an even-even nucleus with = Ko = 0. In this case one finds 
from (25)

< I, Kt M, I (</) I 000 > - B* 1,, (g) åMl/l ( I >'' ' K (28)

and therefore
- '■ Z A’ (2«)

Eq. (29) shows that the functions Bæ for fixed 2, /./ and A\ are the relative excita
tion amplitudes for A 2 excitations of the states of spin I and magnetic quantum 
number Mf = /z in a band with K = A\.

A comparison with Eq. 5.8 of ref. 4 shows that the function Bæ is identical 
to the multiple quadrupole excitation amplitude cq„ from a ground state | 2 K1 /li > | A\ > 
of spin 2 and magnetic quantum number //, to a state | IK1 ii > | A\ ) in the ground state 
band which has Ä = A\. From this identity follows immediately the relation

Ziß«o) i2-1- (30)
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which simply expresses the fact that the nucleus in this model must stay in the ground 
state rotational band. By choosing the initial state to be a superposition of the 
states I 2A1//> I Ax > and | 2'K1 | K1 > one may in a similar way show the more 
general relation

z («;?(</))*  (so
I

From the excitation amplitude (24)-(27) one may compute the excitation prob
ability of the state with spin in the K = A\ band. One finds

PIfKx = — I ^IfMf Ki K„ I"

- y 7^ 7.^ l<7„ (» ■ n '<//.(/>, I) (2 //+ I ) z32)
ZÂ'/z v 7

jr jr jr} tßlK (f/0 (^)))'(Ç0 (^)) •
7 \-K1koh/

It is interesting also to compute the total excitation probability PKi of the K = Kr 
band. From (32) one finds

pK, -- 2 o, k, - 2 (zrt>)2 2 («z/< ■ O)2- (33)
Z/ Z /Z

We have here used the completeness relation for the 3-j symbols and the orthogonality 
property (31) for the functions Bjk(q)- This result shows that the total excitation 
probability of the A\ band is exactly the same as that one would find in the ordinary first 
order perturbation treatment. The effect of the multiple excitation that takes place 
is merely a redistribution of this probability on the various members of the band.

In the following we neglect the complications associated with the possibility 
of mixed multipole transitions between the two bands. For pure EÅ transitions the 
excitation probability (32) takes the simpler form

O/K,-(Z<A>)22l«z/<^.f)l2(3//+1)2(/ t J I B/'kO» (9)) I2. (.34)
A i Ko K]

The functions | |2 which determine the excitation probabilities are illustrated
on Figs. 1 and 2 for the case of 2 = 2. For 2 = 1, 2, 3 and /z = 0 they are given in 
Table 4, while for 2 = 2 and ft, 0 they arc given in Table 5.

A further simplification in (34) is achieved for backward scatterings since 
A;/z (tï, ^) vanish(\s f°r Û • Also for other scattering angles one may, to a first 
approximation, neglect the terms in (34) with /z 0. In general, this // = 0 approxi
mation is only accurate for large scattering angles. However, for small values of £ the 
accuracy is quite good even for intermediate angles.
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Fig. 1. The quantity | B*K (ç) |2 for 2 = 2 and I<6 as a function of q. For backward scattering, these 
quantities give the relative quadrupole excitation probabilities in an even-even nucleus of the various ro
tational states in a band with K = 0,1 or 2. For other deflection angles they give the relative excitation pro
babilities of the magnetic substates with M, = 0. The functions are given separately for the three values 

of I K I while the spins I are indicated on the curves.

In the /z = 0 approximation the excitation is determined by the quantities = B^K. 
As can be seen from the definition (26), these functions vanish when Z + 7 is odd. 
This is a reflection of the general selection rule that only natural parity states can 
be excited in even-even nuclei by backward scattering. The functions I3jK are given 
in Table 3 for 2=1,2 and 3.

As an example of the application of the results of this chapter we consider the 
quadrupole excitation of a band with K = 2 in an even-even nucleus. In this case, 
the excitation probability (34) takes the simple form

PJf2 = I Z(2) |2Z I (#> O I2 I ^2 (70 W) I2* (35)
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Fig. 2. The quantities | Bfy (q) |2 for 2 = 2 and Z<6 as functions of q. These quantities give the relative 
quadrupole excitation probabilities in an even-even nucleus of the various rotational substates with spin I 
and fixed magnetic quantum number M = /z in a band with a definite value of K. The functions are given 
separately for different values of K and //. Others may be obtained by means of the relations (67)-(68).

The spin I is indicated on the curves.

The differential cross section which is given by

(M/“ï"2sin’4ÿ/2P/'2 (36)

is illustrated in Fig. 3 as a function of 0 for a special choice of parameters £, q and 
/(2) described in the figure caption. The figure also shows (by dashed curves) the 
result of the above mentioned y = 0 approximation where all terms in (35) with 
f.i 0 are neglected. It is seen that this approximation is accurate only for rather 
large deflection angles.

For the excitation probabilities a considerable improvement over the y = 0 ap
proximation can be achieved by assuming that the coefficients *n (34) are inde
pendent of y and equal to BIK. The constribution from the terms with /x 4= 0 is then 
correct for forward scattering where g0($)<< 1, since B^(0) = BjK= In this ap
proximation the excitation probabilities are given by

V( If J l/4('/»W)l2 (37)

with (cf. ref. 4)
(38)
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Fig. 3. The differential cross sections da/dI2 for the quadrupole Coulomb excitation of a band with K = 2 
in an even-even nucleus. We have assumed that q = 3, /(2) = 0.4 and £ = 0.3, and the cross section is given 
in units of a2. The broad full-drawn curves show the result of applying Eqs. (35)-(36). The dashed curves 
and the thin full-drawn curves show the results of the /z = 0 approximation and of the £) approxima
tion, respectively. For the state with If = 2, which can be reached directly from the ground state the 
curves have been scaled down by a factor of 3. For the // = 6 state the three curves coincide within the 
accuracy of the drawing. For the It = 3 state no excitation takes place in the /z = 0 and in the %(2)($, £) 

approximations.

The approximation (37) is thus a modification of the // = 0 approximation where 
one applies the parameter (#, £) instead of /?^o (A £) • For backward scattering
angles the two approximations coincide since /(Z) (%, £) = (tt, £). For forward
scattering angles, however, the expression (37) agrees with the result of the perturba
tion treatment, which applies in the limit of small i). Finally, one obtains with (37) 
for all angles the correct result (33) for the total excitation probability of the A\-band.

The /(^($, £) approximation is analogous to the 7 (#) approximation of ref. 4; 
however, the systematic substitution of q0 (#) = qeiî (#) with 7(1?) is not expected to 
improve the approximation further in the present case.

For the special case which is illustrated in Fig. 3 the results of the /(^ (??,£) 
approximation are indicated by thin full-drawn curves. A considerable improvement 
over the fi = 0 approximation is noted for forward scatterings. For intermediate angles 
the expression (37) offers no significant improvement and in both approximations 
the excitation of the states of odd spins is neglected.

The accuracy of the , £) approximation is expected to be inferior for larger 
values of 7 and £. This is connected with the fact that the terms with /z = 1 in (34) 
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can be of importance already for angles where ç0($) is still so large that the coefficient 
is essentially different from ßjK .

The functions (#, £) are given for 2=1,2 and 3 in Table 2.
We conclude the present chapter by considering the effects which are associa

ted with the fact that the nuclear wave functions are given by the symmetrized ex
pressions (5) instead of the simple product (4).

For Ko = A\ = 0, where both the initial and final states are described by product 
wave functions, the Coulomb excitation amplitude of the state | If A\ AL n1 > is given 
by (24)

aifM ^bifMjOO- (39)

It is noticed that the excitation amplitude M 00, as seen from (25) and (26), vanishes 
unless + + Å is even. Since on the other hand the symmetrization implies that 
in the Ax-band only states of even spin or only states of odd spin occur, we obtain 
the following selection rule for the Ao = A\ = 0 case:

(-l/i + //= zbr (40)

where J % is the relative parity of the two bands.
If Ko = 0 and A\ ) 0 (or Ao > 0 and A\ = 0) we find that the excitation amplitude 

of the state | If K1 Mf iq > is given by

alfMt = j + (“ 1)//+K1 . (41)

However, due to symmetry relations between matrix elements of the multipole mo
ments the two terms of (41) are equal, and we get the result

= I - (42)

This factor j/2 will appear also in the ordinary perturbation treatment, and we thus 
still have the rule that the total excitation probability of the coupled band is given 
by the result of the perturbation calculation.

For the case where both A'o)O and Ax ) 0 the excitation amplitude contains four 
terms. Due to symmetry relations the expression reduces to

aifMt = bifMfK1Kt + (~ l)/l+Ku bjjMl Ki_Ko. (43)

The two terms are here essentially different. The first term is proportional to the 
matrix clement connecting the intrinsic states | K1 > and | Ao > while the second is pro
portional to the matrix element between | A\ > and | - Ko >. If Ao + A\£2 both terms 
may contribute to the same transition.
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IV. The Excitation of Mixed Bands

While, in the preceding chapter, we considered the Coulomb excitation of pure 
rotational bands, we shall now investigate the effect of deviations from the pure 
rotational model. These deviations are caused by the presence of the coupling term 
(6) in the nuclear Hamiltonian, which gives rise to admixtures in the pure rotational 
wave functions of states with different intrinsic structure.

We assume that the admixture is so small that it may be evaluated in a per
turbation treatment (7)—(8). Even small mixings may, however, in some cases 
have an important effect on the Coulomb excitation amplitude. This is, e.g., the 
case if the excited band contains an admixture of the intrinsic wave function of the 
ground-stale band. The contribution to the Coulomb excitation amplitude from the 
admixture is proportional to the large matrix elements between identical intrinsic 
states, and even when the admixture is small this contribution may be comparable 
to the contribution from the main part of the wave functions.(7) (11)

Also mixing in the ground-state band or in the excited band of states with K 
values between Ko and may be of importance. As an example one may consider 
the excitation of a band with = A0 + 3, and with the same parity as the ground 
slate. In this case, the direct transition is of A4 type. The mixing between the bands 
occurs only through a third-order term in Hc, and it may be expected that the ad
mixture in the ground state band of states with K = Ko + 1 as well as admixtures in 
the excited band with K = Ko + 2 may lead to E2 transitions of comparable mag
nitude

In the following we limit ourselves to the case where the E‘2 transition be
tween the bands is allowed. In this case the main correction to the results of Chapter 
HI arises from the mixing between the two bands.

In Chapter 11, the effect of the mixing was expressed through a modification (7)—
(8) of the wave functions. An equivalent formulation of the mixing, which is more 
convenient for our purpose, is to maintain the pure rotational wave functions and 
instead modify the multipole operators.

When, in this representation, we expand the expression (1) for the Coulomb 
excitation amplitude, the only contribution to the excitation arises from the second 
term in (10). In this matrix element the operator is given by the expressions
(9) , (12), and (13).

The multipole moment is, however, no longer given by the simple form (14) but 
may instead be expressed as

9)1 (A 2 ^) = e~is X D^v (<*>  ß, 0)^mt (£ 2 r) eis
v

~ X (B 2, r) -1 [S, 21 (B 2 r)]
v L y J

(44)

to first order in S, where S is given by (8).
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For the evaluation of the excitation amplitude we distinguish between the three 
cases where | Ko - K± | = Zl K = 1 , 2 and 0.

For Zl K = 1 we find from (44), utilizing (8), that the intrinsic matrix elements of 
HR (E 2 /z) are given by

< n ± (K + 1 ) I HR (E 2, //) I h ± K > 

-<n'±(A-+l)|ælnt(E2±l)|n±A->7^±1
05)

We have here neglected the terms with r #= 0 in the commutator in (44) and only 
included the matrix elements proportional to the intrinsic quadrupole moment which 
again is assumed to be the same in the two bands.

As is seen from the result (45), the effect of the mixing is merely a change of 
the intrinsic matrix element of the quadrupole moment, and the change in the 
Coulomb excitation amplitude can therefore be described by a renormalization of /.

For zl K = 0 one finds similarly from (44) and (8) the modified matrix clement

< />' ± A-1 TO (E 2, !<) I 11 ± A- > - <«' ± A-| TOlnt (E 20) | n ± A’ > D*  „
(4G)

Inserting (46) in (10) one finds that the correction due to the mixing is a matrix ele
ment of similar structure to that encountered in the computation of multiple Coulomb 
excitation for finite £ (cf. ref. 4). The result may be expressed as the following correc
tion to the excitation amplitude (15) (or (24)-(26)):

« bIt I, A’o Mf I f“’ « "fo I A A0 ’A >

+ 4 <7 A «2 /. (^ > 0 < A A’o 'W/1 «““• l'ë ("fi + "f-1 Z) IA A’o .v, > 

-(b/f'-oZ? W«2/<,(’’. 0)«2,..(«. 0 + ^,.,(•«. 0, O)

X < I, A„ M, I e~u- G (ßj*,  /<A, + , I /, A’o ,V( >

GO

where Åo is given by (16). The last matrix element is multiplied by a second order 
orbital integral which we have separated in real and imaginary parts6) according to 
the definition

— 00

(48)
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where P denotes the principal part. The function £x, £2) has been tabulated10*
for a wide range of and £2 values. Values for = 0 and = //2 = 0 are given in 
Table 1.

In the expression (47) the first term represents a renormalization of the % for the 
transition between the bands by an amount

The second term in (47) vanishes for even even nuclei. In other cases it may easily 
be expressed in terms of the functions BIr. In the third term it is convenient to ex
pand the product of the two D-functions on 1)-functions. In this way the matrix 
element can be expressed in terms of the functions B'jq with ./ = 0, 2, 4.

We shall here only consider the n = 0 approximation. In this approximation 
one may write the expression (47) in the form

^^1/Mf KoK» ~ n /a \ A ^A) I [ ^’ e I A ^A) ^A /

- i 6 (I q\ e0 Gw (#, 0, i) x < I, K„ M, | e’“-D§_11 A M< > 

’ A°7 9 “ «0 tA(A+ O - A (A + 1 )1 k‘ (?.(*»
7Ao(#>())

- eoGoo(A °’£>

x JET «4+Ï(11 V ? < A'A>^A I <JJo (*7o(^))  I A *0 ^A >
j \ UDO / \ — 1 1 0/

(49)

where the matrix elements of CJ0(g) are given by (25).
For £ = 0 the last term in (49) vanishes since Goo (#,(), 0) = 0. The resultant simple 

expression for ôb can in this case be obtained more directly inserting the mixed 
wave functions (7) in the expression (10). The correction term ôb then arises from 
the first term in (10).

For small values of £ one may still neglect the second term in (49). The order of 
magnitude of the error may be estimated by the number f/2e0G00(7*,  0, £).

It is noted that the symmetrization of the rotational wave functions has no effect 

on the result (49) except for Ko = where additional corrections with d7v= 1 may 

appear, and for Ko = 1, where one obtains additional terms with AK = 2.
Mat.Fys. Skr. Dan.Vld. Selsk. 2. no. 6. 2
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Table 1.
The quantity Goo($, 0, £). This function which is defined by Eq. (48) may be used 
for the computation of quadrupole Coulomb excitation of impure bands for finite £. 
The entries are given in the form of a number followed by the power of ten, by 

which it should be multiplied.

0.1 0.2 0.4 0.6 0.8 1.2 2.0

180° 1.530 (-1) 2.459 (- 1) 3.031 (-1) 2.711 (-1) 2.114 (-1) 1.048 (-1) 1.729 (-2)
160° 1.442 (-1) 2.321 (-1) 2.870 (-1) 2.574 (-1) 2.013 (-1) 1.003 (-1) 1.668 (-2)
140° 1.203 ( - 1) 1.946 (- 1) 2.430 (-1) 2.198 (-1) 1.732 (- 1) 8.737 ( 2) 1.485 ( 2)
120° 8.776 (-2) 1.135 (-1) 1.820 (-1) 1.668 (-1) 1.329 (-1) 6.817 (-2) 1.183 (-2)
100° 5.479 (-2) 9.106 (-2) 1.184 (-1) 1.102 (-1) 8.871 (-2) 4.600 (- 2) 7.972 (-3)

80° 2.812 (-2) 4.801 (-2) 6.434 (-2) 6.070 (-2) 4.900 (-2) 2.509 (- 2) 4.090 (-3)
60° 1.101 (-2) 1.965 (-2) 2.71 1( 2) 2.546 (-2) 2.008 (-2) 9.534 (-3) 1.272 (-3)
40° 2.831 (-3) 5.386 (-3) 7.354 (-3) 6.373 (-3) 1.514 ( 3) 1.665 ( — 3) 1.261 (-4)
20° 3.153 (-4) 5.861 (-4) 5.722 (-4) 3.206 (-4) 1.416 (-4) 1.934 (-5) 1.855 (-7)

For A K = 2 mixing the evaluation of the corrections to the excitation amplitude 
is completely analogous to the case of A K = 0. We shall here only quote the result 
for the /z = 0 approximation. One finds

— z

/2 2 J\

<00 0)

~ , a e±2 ( WV0 T - Mf I [/| , e Uo] I Ao d/j >
7'20 V7’ U)

i (I <?) Goo (#. 0, O «*,  x < If K„ ± 2 Mf I e-,lc- (l)‘i ± ,), I I„ K„ Mt > 

[|/(/z ± A„ + 2) (If ± A'o + J) (Z,=F Ao) (I, T A„ - 1 ) Iir,^‘ (q„(f>))
«20 (To) £±2

- |/(A ± K„ + 2) (I, = I\„ +1) (/, T A'o) (A T A'o - 1 ) , (q„ (,?))]

- I 6 r/j r:! 2 GOo ( . 0, f) 2^ (2 J + 1 )1/2 i

x < h T Mf I j o (Qo (^)) I A Ao ^A y •

(50)

Again the simple result for £ = 0 can be obtained directly inserting the mixed wave 
functions (7) in (10). For Ko = 0 the symmetrization gives rise to an additional 
factor |/2.
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Appendix 1

In the present work the orbital integrals are to be evaluated in the
coordinate system, where the z axis is chosen in the plane of the orbit in such a way 
that it bisects the angle between -rvi and ~vf, where and ~uf are the initial and final 
velocities of the projectile. We shall here express the integrals S;/z($, by functions 
Rfy. (&> £) which are normalized in such a way that they attain the value 1 for // = 0, 

= and £ = 0, i. e.

(51)

Since the orbital integrals transform like spherical tensors under rotations of the 
coordinate system, the functions 7?;^ (??,£) are related to the integrals 7^(7/, £) in 
the focal system (cf. refs. 5 and 8) by the relation

(M- Z (o, |, °)i>iv(o. I, o) />,.(0, f», (.->2)

where we have utilized the following explicit formula for 7^ (tz , 0) :

(53)

The functions 7?;/z ($, £) satisfy the following symmetry relation

BÂ_^(^) = /^(0,£). (54)
Furthermore one linds

(55) 

which implies that 7?;^(#, 0) vanishes for odd values of /z. Finally we note the fol
lowing property:

7?;/z C71’ £) = 0 f°r /z 0. (56)

A tabulation of the functions R^(&, £) will be published separately10*.  For £ = 0 
the functions 7?;^ (7*,  0) are proportional to the functions ./^z (z9) which for Z = 2 are 
tabulated in ref. 4. The relations are

A.oO’)

r- ■

2*
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Z(1) (0, £)

Table 2.
The quantity %^ (&, for 2=1,2 and 3 as a function of & and £. The square of 
this function gives the variation of the total excitation probabilty of the intrinsic slate 
with particle energy and deflection angle, relative to the case of & = % and £ = 0. It 
is noted that /('?') (%, £)• Furthermore, (&, 0)/%(^ % 0) which

implies that g0(^)/g ~ /(2) (#, 0)//(2).

øv 0.0 0.2 0.4 0.6 0.8 1.0 2.0

180° 1.0000 0.6344 0.3734 0.2140 0.1209 0.06766 0.003449
160° 0.9848 0.6261 0.3695 0.2123 0.1202 0.06740 0.003467
140° 0.9397 0.6014 0.3573 0.2065 0.1175 0.06618 0.003455
120° 0.8660 0.5601 0.3356 0.1950 0.1114 0.06283 0.003261
100° 0.7660 0.5017 0.3022 0.1755 0.0997 0.05582 0.002736

80° 0.6428 0.4261 0.2547 0.1453 0.0807 0.04398 0.001847
60° 0.5000 0.3320 0.1908 0.1030 0.0537 0.02745 0.000815
40° 0.3420 0.2179 0.1100 0.0511 0.0228 0.00990 0.000128
20° 0.1736 0.0828 0.0252 0.0069 0.0018 0.00045 0.000000

Z(2> (0 V)

ØV 0.0 0.2 0.4 0.6 0.8 1.0 2.0

180° 1.0000 0.8342 0.5929 0.3924 0.2488 0.1536 0.01100
160° 0.9728 0.8148 0.5828 0.3882 0.2479 0.1539 0.01133
140° 0.8943 0.7579 0.5519 0.3742 0.2428 0.1530 0.01191
120° 0.7729 0.6679 0.4992 0.3461 0.2288 0.1462 0.01182
100° 0.6216 0.5513 0.4243 0.3000 0.2006 0.1290 0.01026

80° 0.4561 0.4175 0.3294 0.2345 0.1560 0.0991 0.00704
60° 0.2932 0.2779 0.2204 0.1531 0.0978 0.0591 0.00310
40° 0.1498 0.1462 0.1095 0.0682 0.0382 0.0200 0.00048
20° 0.0438 0.0407 0.0209 0.0081 0.0027 0.0008 0.00000

Z(3> (0 V)

ØV 0.0 0.2 0.4 0.6 0.8 1.0 2.0

180° 1.0000 0.9077 0.7201 0.5268 0.3653 0.2439 0.02345
160° 0.9624 0.8761 0.7008 0.5176 0.3626 0.2445 0.02461
140° 0.8528 0.7862 0.6436 0.4878 0.3503 0.2419 0.02671
120° 0.6935 0.6513 0.5518 0.4327 0.3203 0.2268 0.02707
100° 0.5102 0.4908 0.4327 0.3512 0.2667 0.1923 0.02353

80° 0.3307 0.3269 0.2998 0.2497 0.1920 0.1387 0.01584
60° 0.1778 0.1813 0.1715 0.1434 0.1083 0.0758 0.00672
40° 0.0692 0.0725 0.0687 0.0539 0.0370 0.0230 0.00099
20° 0.0118 0.0128 0.0098 0.0052 0.0009 0.0009 0.00000
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It was shown in Chapter III that in many cases it will be sufficient to know the 
following combination of the functions 7^/f (#,£):

z«>(0, {)//*>  . (Ö, f))2]1'2- (58)
L n J

This function is related to the differential excitation function d/ß;i(#,£) in the first 
order perturbation theory (cf. refs. 5 and 8) by the formula

Z(7) (d, £)//A) = £)ldfEi(7i, ())]1/2 sin2 #/2. (59)

These functions are given in Table 2 for 2=1,2 and 3.

Appendix 2

I he excitation amplitudes of states in deformed nuclei are all expressed through 
the functions BjE which may be written in the form

< (,) - < IKfl I |/2lTÏ D^k I 000 >. (60)

In the /A)($,£) approximation and in the /z = 0 approximation one needs only 
the functions (60) with /z = 0. For these quantities we use the notation B^K, i.e.

^ik = ^ik- (61)

From Eq. (26) one finds for 2=1,2 and 3 the following explicit expressions for 
in terms of the functions Az defined by (27):

B2
I, 0 ~

/5 (2 / + 1) r___3 (7-1)7 2 7(Z+1)
4 |(2 I - 1 ) (2 I + 1 ) A/"2 + (2 I - 1 ) (2 I + 3) Al

3(Z+l)(Z + 2)
(27+ 1) (27 + 3) 2 + 2

B2 |/15/(/ + l)(2/ + l)
(2 7-1) (2/+l)A/-2

(2 / - 1 ) (2 I + 3) Al (2 7 + 1 ) (2 7 + 3) A/ + 2

1^,2=4I /1È(^ - O / (/ F 1 ) (Z + 2) (2 7 + 1 ) [
8 ’ ’ [(2 7 - 1) (2 7 + 1)A/-2

2 « 1
(27- 1) (2 7 + 3) Al + (2Z+1T(2 7 + 3) + 2

(62)

(63)
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b3 = I /____ -____
|/4(2/ + l)

5 (7 - 2) (1-1)1 
(2 I -3) (2 I - 1) 7-3

3J7 -_1) 7(7 + 1)
(2/ 3) (2 7+ 3) 7-1

37(7 + l)(7 + 2) 5 (7 +1) (7 + 2) (7 + 3)
“(2 7 - 1) (2 7 + 5) 7 + 1 ' (2 7+ 3) (2 7 + 5)

3 |/21 7(7 + 1) T 5(7-2)(7-_l) (7 -l)(7 + 6)
711 J 16(27+1“) |(2 7 -3) (2 7- 1/7“3 r (2 7-3) (2 7+3) 7-1 

(7-5) (7 + 2)  5(7 + 2) (7 + 3)
(2 7- 1 ) (2 7 + 5) 7 + 1 (2 7 + 3) “(2 7 + 5) 7 + 3

,3 = i y 1 05 (7 - 1 ) 7(7 + 1 ) (7 + 2) 
7’2 I 8(2 7+1) (2 7 -3) (2 7 - 1)A/-3

J.73_____ 4_______ A +_____________ 7+3______ 4
(2 7 - 3) (2 7 + 3) 7"1 (2 7 - 1) (2 7 + 5) 7 + 1 (2 7+ 3) (2 7 + 5) 7 + 3

B3 
I, 3 ~

35(7-2) (7-1) 7(7+1) (7 + 2) (7 + 3)
16(27+1) (2 7-3) (2/-l)^7“3

_________ —__________ 4

(2 7- 3) (2 7 + 3) 7-1
___ ' ___4__________________  4 
(2/-l)(2/ + 5)‘ 7 + 1 (2/+ 3) (2/+ 5)' 7 + 3

(64)

Table 3.
The quantities BjK(q). The table lists the real and imaginary part of this quantity 
for 1, 2 and 3, and 7<2 + 4 as a function of q. In the use of the tables the sym
metry relations (65) should be employed. The quantity 7i„0 has been omitted because 
of its simple relation (66) to the function A2(q). The tables have been computed by 
means of the relations (62)—(64) from the functions (q) as they are tabulated in ref. 4.

*7 Re ßJ.O Im B} Q R' «3.0 Im ß3.0 Be B7 n
5.0 1,11 R5.()

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.93169 — 0.25556 - 0.05647 -0.24974 - 0.03190 0.00664
1.0 0.74457 -0.44841 - 0.20654 -0.43136 -0.11374 0.04960
1.5 0.48634 -0.53440 - 0.39849 -0.49869 -0.20901 0.14865
2.0 0.22007 — 0.50052 -0.56619 -0.44190 -0.27331 0.29737
2.5 0.00530 -0.36721 -0.65117 -0.28935 -0.27188 0.46337
3.0 -0.11902 -0.10851 -0.62214 -0.09682 -0.19400 0.59947
3.5 -0.14402 0.00361 - 0.48453 0.07219 -0.05789 0.66093
4.0 - 0.09039 0.13687 -0.27727 0.16768 0.09494 0.62240
4.5 0.00148 0.19262 -0.05866 0.16881 0.21476 0.48819
5.0 0.02204 0.17150 0.11394 0.08861 0.26156 0.29196
5.5 0.13098 0.08816 0.20260 -0.04283 0.21978 0.08571
6.0 0.12080 0.00854 0.19958 -0.14671 0.10398 -0.07774
6.5 0.06502 -0.06088 0.12711 -0.20908 — 0.04646 -0.16222
7.0 -0.01110 -0.08843 0.02663 - 0.20029 -0.18163 -0.15950
7.5 -0.07736 -0.07127 -0.05772 -0.12758 -0.25860 - 0.09024
8.0 -0.11025 -0.02414 -0.09487 -0.02083 -0.25622 0.00527
8.5 -0.10116 0.02851 -0.07653 0.08404 -0.18124 0.08288
9.0 -0.04457 0.06324 -0.01760 0.14214 -0.06440 0.11078
9.5 - 0.00080 0.06650 0.05204 0.14786 0.05192 0.07997

10.0 0.04761 0.03906 0.10086 0.10309 0.12973 0.00597

(continued)
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Table 3 (continued).

Im B3.1

0.0 1.00000
0.5 0.96853
1.0 0.87738
1.5 0.73585
2.0 0.55838
2.5 0.36086
3.0 0.16208
3.5 -0.02177
4.0 -0.17709
4.5 -0.29408
5.0 -0.36728
5.5 -0.39549
6.0 -0.38122
6.5 -0.32911
7.0 -0.25014
7.5 -0.15095
8.0 -0.04305
8.5 0.06282
9.0 0.15659
9.5 0.22951

10.0 0.27507

0.00000
0.13192
0.25542
0.36224
0.44466
0.49598
0.51135
0.48850
0.42853
0.33620
0.21883
0.09542

- 0.03880
-0.15550
-0.24824
-0.30866
-0.33224
-0.31871
-0.27180
-0.19852
-0.10821

0.0001 3
0.00224
0.01063
0.03060
0.06616
0.11804
0.18236
0.25089
0.31239
0.35487
0.36840
0.34738
0.29177
0.20729
0.10418 

-0.00476 
-0.10652 
-0.19001 
-0.24730 
-0.27453

0.00000 
-0.20952 
-0.39422 
— 0.53335 
-0.61352 
-0.63025 
-0.58788 
-0.49778 
-0.37551 
-0.23768 
-0.09947

0.01944
0.13412
0.21654
0.27214
0.30019
0.30096
0.27556
0.22636
0.15737
0.07463

Re Im ßl .0.1

0.00000 0.00000
-0.02524 0.00127
-0.09593 0.00963
-0.19807 0.02908
-0.31205 0.05849
-0.41698 0.09136
-0.49517 0.11731
— 0.53542 0.12510
-0.53429 0.10606
-0.49568 0.05702
-0.42833 -0.01818
-0.34303 -0.10924
-0.24989 -0.20145
-0.15631 - 0.27909
- 0.06664 -0.32881

0.01697 -0.34249
0.09334 -0.31852
0.16063 -0.26152
0.21563 -0.18082
0.25367 -0.08792
0.26994 0.00560

? Re 4.0 Im B22 q Re 0 Im B2 0 Re ß6.0 1,11 ß6.0

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.90692 -0.17790 -0.04471 -0.24229 -0.03080 0.00548
1.0 0.65243 -0.28547 -0.15906 -0.41037 -0.10932 0.04098
1.5 0.30295 -0.27690 -0.29108 -0.45511 -0.19916 0.12000
2.0 -0.05430 -0.14681 -0.37667 -0.36841 -0.25659 0.23110
2.5 -0.33783 0.06798 -0.36414 -0.18469 -0.24903 0.33959
3.0 -0.49570 0.30096 -0.23477 0.03274 -0.16932 0.39971
3.5 -0.51794 0.47857 - 0.01108 0.21456 -0.03934 0.37311
4.0 - 0.43492 0.54458 0.24965 0.30997 0.09738 0.24576
4.5 -0.30242 0.47804 0.47471 0.30320 0.19253 0.03431
5.0 -0.17974 0.29879 0.60044 0.21656 0.21204 -0.20721
5.5 -0.10880 0.05215 0.59355 0.09038 0.15002 -0.42244
6.0 -0.10157 -0.17497 0.46128 0.00879 0.03191 -0.55300
6.5 -0.13943 — 0.34505 0.24735 -0.01475 -0.09414 — 0.56771
7.0 -0.18415 -0.41829 0.01557 0.03987 -0.17543 -0.47049
7.5 -0.19537 -0.39438 -0.17234 0.15016 -0.17438 -0.29825
8.0 -0.14741 -0.30135 -0.27675 0.26984 -0.08308 -0.10701
8.5 -0.03966 -0.18188 -0.29053 0.34728 0.07334 0.04828
9.0 0.10353 -0.07638 -0.23729 0.34539 0.24548 0.13222
9.5 0.24223 -0.00915 -0.15846 0.25495 0.37809 0.13952

10.0 0.33620 0.01757 -0.09524 0.09786 0.42535 0.09404

(continued)
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Table 3 (continued).

? Re b%a Ini i Re «2 T Im ^4.1 Re Bi.i Illi
o. 1

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.96867 -0.09207 - 0.02765 -0.22720 -0.02777 0.00377
1.0 0.87978 -0.16602 -0.10317 -0.41953 -0.10344 0.02816
1.5 0.74722 -0.20793 -0.20647 -0.54991 - 0.20628 0.08670
2.0 0.59073 -0.21122 - 0.31017 0.60501 -0.30889 0.18043
2.5 0.43159 -0.17778 -0.38689 - 0.58708 -0.38478 0.29681
3.0 0.28827 0.11712 -0.41638 -0.51228 — 0.41591 0.41334
3.5 0.17318 - 0.04365 - 0.39051 - 0.40540 - 0.39740 0.50391
4.0 0.09113 0.02710 - 0.31448 -0.29294 - 0.33800 0.54634
4.5 0.03988 0.08211 -0.20488 -0.19656 — 0.25656 0.52891
5.0 0.01209 0.11349 - 0.08438 -0.12855 - 0.17570 0.45365
5.5 -0.00165 0.11620 0.02430 - 0.09906 -0.11482 0.33554
6.0 -0.00986 0.10458 0.10385 - 0.07545 -0.08464 0.19801
6.5 -0.01820 0.07600 0.14626 - 0.07098 -0.08486 0.06656
7.0 -0.02854 0.04269 0.15280 - 0.06508 -0.10541 -0.03802
7.5 -0.03957 0.01225 0.13236 -0.04953 -0.13066 -0.10416
8.0 -0.04814 -0.01050 0.09757 - 0.02230 -0.14499 -0.13112
8.5 -0.05106 -0.02413 0.06062 0.01273 -0.13778 -0.12732
9.0 -0.04654 -0.02981 0.03008 0.04790 -0.10651 -0.10607
9.5 -0.03487 -0.03030 0.00946 0.07489 - 0.05673 - 0.08078

10.0 -0.01841 -0.02843 -0.00235 0.08760 0.00034 -0.06093

9 Re B2 2 Im «2 2 Re R? o4.2 Im ß4.2 Re "1.2 Im ß6.2

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.96849 0.18792 0.00992 0.16214 - 0.01772 - 0.00004
1.0 0.87678 0.36078 0.03907 - 0.30790 -0.06818 - 0.00019
1.5 0.73301 0.50478 0.08530 -0.42281 0.14366 -0.00120
2.0 0.54984 0.60862 0.14507 -0.49610 -0.23268 - 0.00482
2.5 0.34317 0.66442 0.21336 -0.52180 -0.32198 -0.01345
3.0 0.13054 0.66846 0.28381 - 0.49922 - 0.39857 -0.03001
3.5 -0.07052 0.62154 0.34912 0.43275 0.45165 - 0.05696
4.0 -0.24415 0.52888 0.40155 -0.33099 - 0.47384 - 0.09537
4.5 - 0.37757 0.39972 0.43395 - 0.20557 -0.46214 -0.14425
5.0 -0.46213 0.24642 0.44050 - 0.06967 - 0.41752 -0.19999
5.5 - 0.49395 0.08331 0.41776 0.05752 0.34462 - 0.25683
6.0 -0.47406 - 0.07464 0.36528 0.18190 - 0.25066 - 0.30731
6.5 - 0.40809 -0.21337 0.28595 0.27569 - 0.14417 -0.34360
7.0 - 0.30555 -0.32097 0.18588 0.33794 -0.03410 -0.35881
7.5 -0.17879 -0.38889 0.07378 0.36492 0.07094 -0.34821
8.0 -0.04178 -0.41268 -0.04000 0.35618 0.16344 -0.31030
8.5 0.09130 -0.39236 -0.14472 0.31441 0.23709 -0.24700
9.0 0.20736 -0.33228 -0.23051 0.24501 0.28726 — 0.16365
9.5 0.29560 -0.24056 -0.28954 0.15562 0.31083 - 0.06803

10.0 0.34843 -0.12816 -0.31686 0.05539 0.30675 0.03046

(continued)
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Table 3 (continued).

<7 Re B33.0 Im Bl.O Re 4.0 Im ß5.0 Re B37.0 Im B3 0

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.92002 -0.16436 -0.04240 -0.24144 -0.03065 0.00530
1.0 0.70468 -0.25402 - 0.15033 -0.41653 -0.10975 0.03966
1.5 0.41948 -0.22136 - 0.27340 -0.48338 -0.20401 0.11547
2.0 0.14795 -0.06293 -0.34988 -0.43871 -0.27459 0.22299
2.5 -0.03650 0.17913 -0.33166 -0.31801 -0.29269 0.32940
3.0 -0.09545 0.43210 - 0.20395 -0.18144 -0.25409 0.39269
3.5 -0.03553 0.61829 0.00782 -0.08956 -0.18074 0.37852
4.0 0.09555 0.68187 0.24605 -0.08238 -0.11229 0.27631
4.5 0.22908 0.60745 0.44146 -0.15995 -0.08957 0.10550
5.0 0.30095 0.42378 0.53791 -0.28737 -0.13657 -0.08861
5.5 0.27476 0.18559 0.51238 -0.41581 -0.24866 - 0.25072
6.0 0.15361 -0.01684 0.38241 -0.45984 -0.39192 -0.33508
6.5 -0.02306 -0.14678 0.19888 -0.41197 -0.51432 -0.32258
7.0 -0.19579 -0.17469 0.02641 -0.26452 - 0.56498 -0.22795
7.5 -0.30786 -0.11523 -0.08031 -0.05527 -0.51357 -0.09405
8.0 -0.32584 -0.01197 -0.09569 0.15547 -0.36295 0.02404
8.5 - 0.25046 0.08137 -0.03069 0.30708 -0.14934 0.08025
9.0 -0.11437 0.12212 0.07369 0.36005 0.06985 0.05437
9.5 0.03175 0.09365 0.16384 0.30917 0.23581 -0.04032

10.0 0.13884 0.00984 0.19512 0.18396 0.30896 -0.16299

Q Re 4.1 Im Bl.l Re B3 , Im B3 n0.1 Re B3 a Im B7.1

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.94033 -0.12797 -0.03360 -0.23128 -0.02860 0.00429
1.0 0.77238 -0.22544 -0.12356 -0.41192 -0.10454 0.03208
1.5 0.52654 -0.27028 -0.24081 -0.50381 -0.20110 0.09777
2.0 0.24554 -0.25481 -0.34718 -0.49108 -0.28325 0.19830
2.5 -0.02517 -0.18742 -0.40656 -0.39107 -0.32010 0.31468
3.0 -0.25071 -0.09005 -0.39599 -0.20959 -0.29359 0.41627
3.5 -0.39597 0.00823 -0.31256 -0.01307 -0.20468 0.47095
4.0 -0.46452 0.07937 -0.17385 0.16445 -0.07290 0.45556
4.5 -0.46144 0.10383 -0.01282 0.29156 0.07030 0.36442
5.0 -0.40596 0.07534 0.13195 0.35406 0.19162 0.21190
5.5 -0.32146 -0.00309 0.22708 0.34778 0.26608 0.02920
6.0 -0.22876 -0.09788 0.25318 0.31564 0.28406 -0.14438
6.5 -0.14185 -0.19901 0.20902 0.25683 0.25325 -0.27225
7.0 -0.06649 -0.27830 0.11062 0.20120 0.19460 -0.33033
7.5 -0.00194 -0.31910 -0.01477 0.16157 0.13446 -0.31286
8.0 0.05590 -0.31479 -0.13686 0.13929 0.09548 -0.23241
8.5 0.11046 -0.26889 -0.23042 0.12599 0.08934 -0.11486
9.0 0.16190 -0.19266 -0.28093 0.10871 0.11365 0.00926
9.5 0.20612 -0.10106 -0.28625 0.07578 0.15373 0.11336

10.0 0.23599 -0.00884 -0.25453 0.02192 0.18874 0.18145

(continued)
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Table 3 (continued).

7 Re B% 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

1.
0.97996
0.92190
0.83151
0.71735
0.58954
0.45825
0.33260
0.21952
0.12352
0.04654

-0.01157
-0.05227
-0.07790
- 0.09092
-0.09361
-0.08797
-0.07581
-0.05882
-0.03873
-0.01746

0.00000
0.00069
0.00525
0.01657
0.03577
0.06189
0.09201
0.12185
0.14669
0.16235
0.16597
0.15664
0.13538
0.10498
0.06926
0.03248

- 0.00140
-0.02932
-0.04937
- 0.06087
-0.06419

0.00000
-0.01009
-0.03772
-0.07585
-0.11444

0.14299
- 0.15300
- 0.13987
- 0.10375 
-0.04960

0.01422
0.07774
0.13140
0.16800
0.18381
0.17868
0.15580
0.12040
0.07861
0.03621

-0.00221

Im B^ 2

0.00000
-0.19764

0.37542
-0.51672

0.61057
0.65269 

-0.64589 
-0.59860
- 0.52270 
-0.43103

0.33520
-0.25136
-0.16297
- 0.09409
- 0.03726

0.00885
0.04565
0.07396
0.09375
0.10449
0.10562

Re 7^ 2 Im 71? 9

0.00000 0.00000
- 0.02250 0.00181
-0.08577 0.01340
-0.17810 0.04193
- 0.28337 0.08894
-0.38351 0.14992
- 0.46302 0.21533
— 0.51158 0.27275
— 0.52537 0.30990
- 0.50708 0.31758
-0.46416 0.29206
-0.40647 0.23574
-0.34359 0.15659
-0.28281 0.06636
- 0.22792 - 0.02219
-0.17942 -0.09760
-0.13546 -0.15198
- 0.09336 -0.18180
-0.05114 -0.18780
-0.00850 0.17394

0.03290 -0.14610

Q Re "L Im B% 3 <3 Im B5.3 Re IS7.3 Im B$ g

0.0 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.5 0.96658 0.21912 0.01361 -0.13171 -0.01301 — 0.00057
1.0 0.86926 0.42004 0.05307 - 0.25006 - 0.05028 -0.00411
1.5 0.71659 0.58615 0.11424 -0.34310 -0.10671 -0.01343
2.0 0.52192 0.70411 0.19065 -0.40152 -0.17430 -0.03098
2.5 0.30212 0.76484 0.27407 -0.41969 -0.24369 -0.05808
3.0 0.07591 0.76454 0.35527 -0.39616 -0.30505 -0.09519
3.5 -0.13769 0.70482 0.42492 -0.33372 -0.34945 -0.14143
4.0 -0.32142 0.59259 0.47446 -0.23905 -0.36990 -0.19443
4.5 -0.46108 0.43928 0.49713 -0.12186 -0.36229 -0.25045
5.0 -0.54690 0.25982 0.48850 0.00598 - 0.32558 - 0.30444
5.5 -0.57435 0.07916 0.44720 0.12708 -0.26198 - 0.35075
6.0 -0.54386 -0.10965 0.37517 0.24392 -0.17671 - 0.38345
6.5 -0.46312 -0.26643 0.27740 0.33148 -0.07704 -0.39736
7.0 -0.34131 -0.38601 0.16166 0.38681 0.02826 -0.38854
7.5 -0.19299 -0.45912 0.03773 0.40539 0.12988 -0.35510
8.0 -0.03408 -0.48122 -0.08364 0.38644 0.21900 -0.29768
8.5 0.11914 -0.45286 -0.19174 0.33269 0.28792 -0.21940
9.0 0.25174 -0.37945 -0.27715 0.25025 0.33095 -0.12592
9.5 0.35133 -0.27053 -0.33247 0.14771 0.34459 -0.02467

10.0 0.40942 -0.13882 -0.35340 0.03547 0.32814 0.07570
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These functions have been computed for I = 2 + 2, 2 + 4, and </<10 and the
result is given in Table 3. For odd values of 2 + / the functions BjK vanish, while 
for /< 2 and /<<() they can be found from the symmetry relations

and (65)

For I = 0 the functions BjK are proportional to the functions A; which are tabu
lated in refs. 4 and 8.

«00 + !+('/) (66)

and we have therefore omitted the table of BqQ.
For convenience we have computed also the functions | b}k\^ which determine 

the relative excitation probabilities. They arc given for 2=1, 2 and 3 and I< 2 + 4 
in Table 4.

Table 4.
The quantities | BjK(q) |2 for 2 = 1, 2 and 3 and /<2 + 4 as functions of q. These qu
antities determine in the %(#, £) approximation, Eq. (37), the relative excitation pro

bability of the rotational states in the coupled band.

Koi2 1 4, 1 I2

7 I = 1 1 = 3 7 = 5 I = 1 7 = 3 7 = 5

0.0 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.5 0.9334 0.0656 0.0010 0.9555 0.0439 0.0006
1.0 0.7555 0.2287 0.0154 0.8350 0.1554 0.0093
1.5 0.5221 0.4075 0.0658 0.6727 0.2846 0.0401
2.0 0.2990 0.5158 0.1631 0.5095 0.3773 0.1008
2.5 0.1349 0.5078 0.2887 0.3762 0.4016 0.1822
3.0 0.0468 0.3964 0.3970 0.2878 0.3596 0.2590
3.5 0.0208 0.2400 0.4402 0.2391 0.2810 0.3023
4.0 0.0269 0.1050 0.3964 0.2150 0.2040 0.2967
4.5 0.0371 0.0319 0.2844 0.1995 0.1541 0.2490
5.0 0.0299 0.0208 0.1536 0.1832 0.1358 0.1838
5.5 0.0249 0.0429 0.0556 0.1655 0.1361 0.1296
6.0 0.0147 0.0614 0.0168 0.1468 0.1387 0.1030
6.5 0.0079 0.0599 0.0285 0.1325 0.1320 0.1023
7.0 0.0091 0.0408 0.0584 0.1242 0.1170 0.1126
7.5 0.0111 0.0196 0.0750 0.1181 0.1010 0.1176
8.0 0.0114 0.0094 0.0657 0.1122 0.0906 0.1102
8.5 0.0110 0.0129 0.0397 0.1055 0.0873 0.0942
9.0 0.0070 0.0205 0.0164 0.0984 0.0874 0.0792
9.5 0.0044 0.0246 0.0091 0.0921 0.0859 0.0721

10.0 0.0062 0.0208 0.0169 0.0874 0.0809 0.0729

(continued)
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Table 4 (continued).
14, o I2 1 4, 112

7 7 = 0 ' -2 7 = 4 7 = 6 7 = 2 7 = 4 7 = 6

0.0 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.5 0.0841 0.8542 0.0607 0.0010 0.9468 0.0524 0.0008
1.0 0.2850 0.5072 0.1937 0.0136 0.8016 0.1866 0.0115
1.5 0.4812 0.1684 0.2919 0.0541 0.6016 0.3450 0.0501
2.0 0.5597 0.0245 0.2776 0.1192 0.3936 0.4622 0.1280
2.5 0.4842 0.1188 0.1667 0.1773 0.2179 0.4944 0.2362
3.0 0.3098 0.3363 0.0562 0.1884 0.0968 0.4358 0.3438
3.5 0.1389 0.4973 0.0462 0.1408 0.0319 0.3168 0.4118
4.0 0.0514 0.4857 0.1584 0.0699 0.0090 0.1847 0.4127
4.5 0.0600 0.3200 0.3173 0.0382 0.0083 0.0806 0.3456
5.0 0.1158 0.1216 0.4073 0.0879 0.0130 0.0236 0.2367
5.5 0.1540 0.0146 0.3605 0.2010 0.0135 0.0104 0.1258
0.0 0.1412 0.0409 0.2129 0.3068 0.0110 0.0165 0.0464
6.5 0.0917 0.1385 0.0614 0.3312 0.0061 0.0264 0.0116
7.0 0.0459 0.2089 0.0018 0.2521 0.0026 0.0276 0.0126
7.5 0.0343 0.1937 0.0522 0.1194 0.0017 0.0200 0.0279
8.0 0.0552 0.1125 0.1494 0.0184 0.0024 0.0100 0.0382
8.5 0.0819 0.0347 0.2050 0.0077 0.0032 0.0038 0.0352
9.0 0.0879 0.0166 0.1756 0.0777 0.0030 0.0032 0.0226
9.5 0.0685 0.0588 0.0901 0.1624 0.0021 0.0057 0.0097

10.0 0.0408 0.1133 0.0186 0.1898 0.0012 0.0077 0.0037

1 2 P Ko P

7 7 = 2 7 = 4 7 = 6 7 = 1 7 = 3 7 = 5 7 = 7

0.0 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.5 0.9733 0.0264 0.0003 0.0656 0.8734 0.0601 0.0009
1.0 0.8989 0.0963 0.0046 0.2287 0.5611 0.1961 0.0136
1.5 0.7921 0.1860 0.0206 0.4075 0.2250 0.3084 0.0550
2.0 0.6728 0.2672 0.0542 0.5158 0.0258 0.3149 0.1251
2.5 0.5592 0.3178 0.1038 0.5078 0.0334 0.2111 0.1942
3.0 0.4639 0.3298 0.1598 0.3964 0.1958 0.0745 0.2188
3.5 0.3913 0.3092 0.2072 0.2400 0.3835 0.0081 0.1760
4.0 0.3393 0.2708 0.2336 0.1050 0.4741 0.0673 0.0890
4.5 0.3023 0.2306 0.2344 0.0319 0.4215 0.2205 0.0192
5.0 0.2743 0.1989 0.2143 0.0208 0.2702 0.3719 0.0265
5.5 0.2509 0.1778 0.1847 0.0429 0.1099 0.4354 0.1247
6.0 0.2303 0.1665 0.1573 0.0614 0.0239 0.3577 0.2659
6.5 0.2121 0.1578 0.1388 0.0599 0.0221 0.2093 0.3686
7.0 0.1964 0.1488 0.1299 0.0408 0.0688 0.0707 0.3711
7.5 0.1832 0.1386 0.1263 0.0196 0.1080 0.0095 0.2726
8.0 0.1720 0.1285 0.1230 0.0094 0.1063 0.0333 0.1323
8.5 0.1623 0.1198 0.1172 0.0129 0.0694 0.0952 0.0287
9.0 0.1534 0.1132 0.1093 0.0205 0.0280 0.1351 0.0078
9.5 0.1452 0.1080 0.1012 0.0246 0.0098 0.1224 0.0572

10.0 0.1378 0.1035 0.0950 0.0208 0.0194 0.0719 0.1220

(continued)
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Table 4 (continued).
i 3 i21 Sj 11

? I = 1 Z = 3 1 = 5 I = 7

0.0 0.0000 1.0000 0.0000 0.0000
0.5 0.0439 0.9006 0.0546 0.0009
1.0 0.1554 0.6474 0.1849 0.0120
1.5 0.2846 0.3503 0.3118 0.0500
2.0 0.3773 0.1252 0.3617 0.1196
2.5 0.4016 0.0358 0.3182 0.2015
3.0 0.3596 0.0710 0.2007 0.2595
3.5 0.2810 0.1569 0.0979 0.2637
4.0 0.2040 0.2221 0.0573 0.2128
4.5 0.1541 0.2237 0.0852 0.1377
5.0 0.1358 0.1705 0.1428 0.0816
5.5 0.1361 0.1034 0.1725 0.0716
6.0 0.1387 0.0619 0.1637 0.0807
6.5 0.1320 0.0597 0.1096 0.1383
7.0 0.1170 0.0819 0.0527 0.1470
7.5 0.1010 0.1018 0.0263 0.1160
8.0 0.0906 0.1022 0.0381 0.0631
8.5 0.0873 0.0845 0.0690 0.0212
9.0 0.0874 0.0633 0.0907 0.0130
9.5 0.0859 0.0527 0.0877 0.0365

10.0 0.0809 0.0558 0.0652 0.0686

Kai2 Kai2

7 Z = 3 Z = 5 Z = 7 Z = 3 Z = 5 Z = 7

0.0 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.5 0.9603 0.0392 0.0005 0.9823 0.0175 0.0002
1.0 0.8499 0.1424 0.0075 0.9320 0.0654 0.0025
1.5 0.6917 0.2728 0.0335 0.8571 0.1308 0.0116
2.0 0.5159 0.3859 0.0882 0.7682 0.1976 0.0313
2.5 0.3514 0.4464 0.1696 0.6763 0.2512 0.0628
3.0 0.2185 0.4406 0.2608 0.5903 0.2832 0.1021
3.5 0.1255 0.3779 0.3361 0.5157 0.2919 0.1421
4.0 0.0697 0.2840 0.3720 0.4545 0.2823 0.1746
4.5 0.0416 0.1882 0.3580 0.4056 0.2620 0.1940
5.0 0.0297 0.1126 0.3007 0.3666 0.2387 0.1987
5.5 0.0247 0.0692 0.2208 0.3361 0.2161 0.1917
6.0 0.0211 0.0438 0.1426 0.3078 0.2002 0.1783
6.5 0.0171 0.0371 0.0844 0.2855 0.1868 0.1638
7.0 0.0131 0.0352 0.0524 0.2655 0.1758 0.1518
7.5 0.0098 0.0320 0.0417 0.2480 0.1658 0.1430
8.0 0.0077 0.0264 0.0414 0.2327 0.1563 0.1366
8.5 0.0066 0.0200 0.0418 0.2193 0.1474 0.1310
9.0 0.0059 0.0150 0.0379 0.2074 0.1394 0.1254
9.5 0.0052 0.0122 0.0303 0.1966 0.1324 0.1194

10.0 0.0044 0.0112 0.0224 0.1869 0.1262 0.1134
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For a more accurate description of the dependence of the excitation amplitudes 
on the deflection angle one needs the functions B^ with // 0. These functions
satisfy a number of symmetry relations which are consequences of symmetry pro
perties of the 3-/ symbols and of the fact that Aj vanishes for odd values of J. These
relations are

and
(67)

(68)

For A = 1 and 2 Eq. (26) reads explicitly

J/ 4(2/ + l) + +

|/3(2/ + I)
I 4

1 odd

I even

4

I even

oddI

I + 1

3
I even

I odd

2

I even

5 I odd

772’2 =

4(2 7+ 1)

1, 2

B2’1 =DI, 2

B2’1 =1

/5(2 7 + l)

(2 7 - 1) (2 7 + 1) Al~2

I . 1

(7+_l)(7+2)
(2 7 - 1) (2 7 + 1) '

(7-1)7

(2 7 - 1 ) (2 7 + 3) Al (2 7 + 1) (2 7 + 3) Al + 2

2(7-l)(7+l)
(2 7 - 1) (2 7 + 1) z~2
3 ( 27(7 + 2)

/5(2 7 + l)
16
6(7 !)(/ 2)

(2 7- 1) (2 7 + 3) 1 (2 7 + 1) (2 7 +3) 7 + 2

(69)

(70)

Fl 2 LIThe absolute squares of the functions BIK have been computed numerically and 
the result is given in Table 5.

We note finally that the functions 7i^ satisfy the relations 

and (cf. Eq. (31 ))
^ik (6) - ^i, '/. (71)

(72)
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Table 5.
The quantities | Bfy (q) |2 for A = 2, y#0, K=^0, and 7<6 as functions of q. From 
these quantities the relative quadrupole excitation probabilities can be determined by 
means of Eq. (34). In the application of the table one should employ the symmetry 
relations (67)—(68). For K = 0 or u = 0 the functions reduce to the quantities | BjK |2 

given in Table 4.

q 7 = 1 7 = 2 7 = 3 7 = 4 7 = 5 7 = 6

0.0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0631 0.8811 0.0126 0.0423 0.0003 0.0006
1.0 0.2138 0.5879 0.0484 0.1370 0.0042 0.0083
1.5 0.3609 0.2708 0.1005 0.2122 0.0187 0.0332
2.0 0.4198 0.0737 0.1548 0.2120 0.0487 0.0738
2.5 0.3632 0.0513 0.1921 0.1393 0.0918 0.1108
3.0 0.2324 0.1496 0.1958 0.0521 0.1368 0.1191

q 7 = 2 7 = 3 7 = 4 7 = 5 7 = 6

0.0 1.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.9470 0.0305 0.0217 0.0005 0.0002
1.0 0.8048 0.1079 0.0762 0.0072 0.0035
1.5 0.6157 0.1976 0.1373 0.0312 0.0152
2.0 0.4300 0.2620 0.1771 0.0784 0.0380
2.5 0.2861 0.2789 0.1798 0.1417 0.0682
3.0 0.1988 0.2497 0.1482 0.2014 0.0955

q 7 = 2 7 = 3 7 = 4 7 = 5 7 = 6

0.0 1.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.9125 0.0751 0.0114 0.0009 0.0001
1.0 0.6860 0.2539 0.0458 0.0124 0.0017
1.5 0.4087 0.4269 0.1003 0.0515 0.0090
2.0 0.1753 0.4924 0.1634 0.1234 0.0284
2.5 0.0419 0.4179 0.2135 0.2075 0.0658
3.0 0.0075 0.2538 0.2278 0.2658 0.1175
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